SELECTING A PREVENTIVE MAINTENANCE TREATMENT FOR FLEXIBLE PAVEMENTS

> Dr. R. Gary Hicks, P.E. Stephen B. Seeds, P.E. and David G. Peshkin, P.E.

#### for

Foundation for Pavement Preservation October 1999

#### **Presentation Outline**

- Background and Objectives
- Establishing a Preventive Maintenance Program
- Framework for Treatment Selection and Timing
- Analysis to Determine the Most Effective Treatment

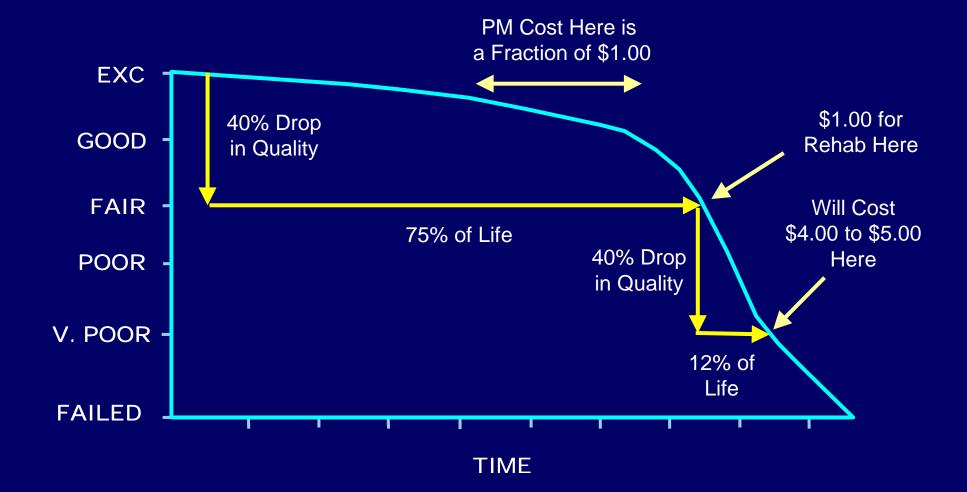
#### Summary

#### Background

Pavement Management Systems
 Most Agencies have one
 Usually contain maintenance component

#### Limitations

Models to determine cost effective treatment
Most don't contain proper treatment timing


# Background (continued)

#### Types of Pavement Maintenance

#### Preventive (Proactive)

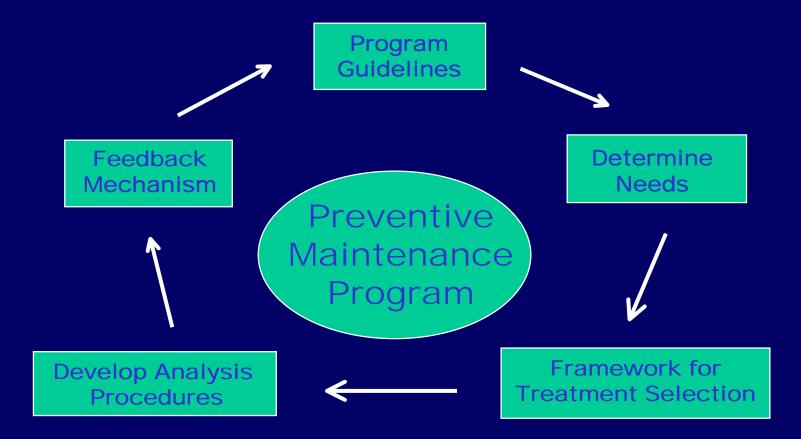
- Arrest light deterioration
- Retard progressive failures
- Reduce need for corrective maintenance
- "Right" treatment at the "right" time!
- Corrective (Reactive)
  - After deficiency occurs
  - More expensive
- Emergency

#### Typical Variation of Pavement of Pavement Condition as a Function of Time

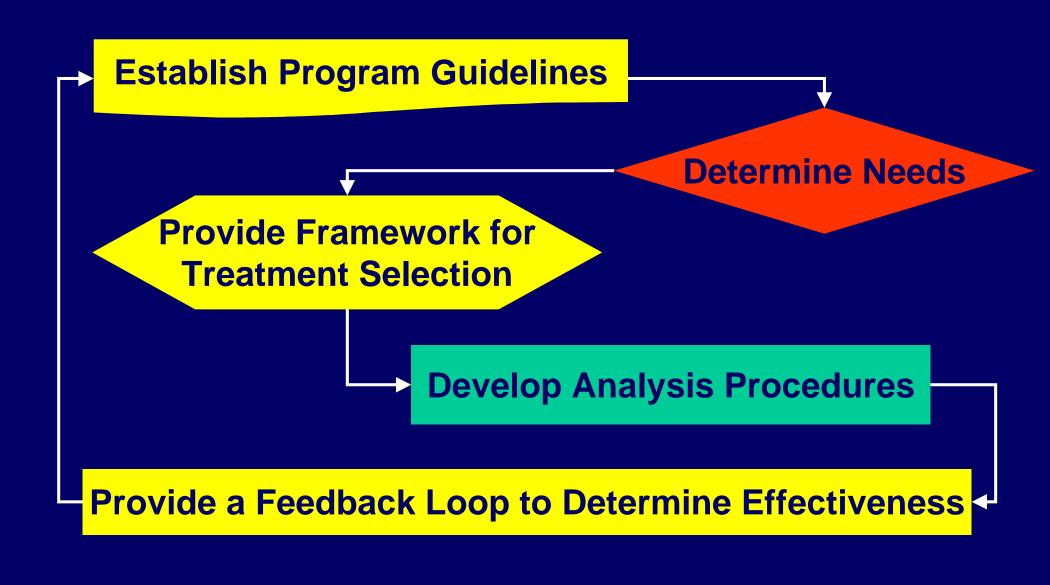


#### Study Objectives

Review existing practices related to selection of appropriate PM strategies
 Develop a framework for selection of the most appropriate PM treatments
 Prepare Summary Report


#### Establishing a Preventive Maintenance Program

Number of Technical Components BUT!
 Two most important are non-technical


Agency Top Management Commitment

Customer Education Program

# Elements of a Preventive Maintenance Program



#### **Elements Flowchart**



#### 1. Establish Program Guidelines

"Policy Manual"

- Contains overall strategies and goals
  - Safety issues
  - Environmental issues
- Program coordinator named
- Technical elements
- Feedback loop

#### 2. Determine Maintenance Needs

Condition Survey
 Trained observers
 Automated vehicles
 Non-destructive testing (FWD, Friction)
 Cores, slabs
 Project data
 Location, ADT, % trucks, environment, etc.

# 3. Framework for Treatment Selection

The "right" treatment at the "right" time on the "right" project

Amen!

# 4. Develop Analysis Procedures for the Most Effective Treatment

- A number of procedures for determining cost effectiveness exist and should be used
- Cost should be part of the decision process but not the <u>only</u> consideration
- Use of decision trees is a viable method

#### 5. Feedback Mechanism

Generally a weakness in many management processes

 "The boss doesn't want to hear bad news" syndrome

Need to know how the system is working
A tool to adjust the program when needed

#### Preventive Maintenance Treatments

Can be effective if used under proper conditions to address distress

- Types of Flexible Pavement distress include:
  - Rutting
  - Cracking (fatigue, block, thermal, etc.)
  - Bleeding
  - Raveling

#### Crack Sealing

Used to prevent water and incompressibles from entering the pavement
Cracks are often routed
Sealants are only effective for a few years

# Fog Seal

Application of diluted emulsion to enrich the surface

Primarily used to address raveling, oxidation, and seal minor surface cracks

Expected life not greater than 3 to 4 years

# Chip Seal

Used to waterproof the surface, seal small cracks and improve surface friction
 Normally used on low-volume roadways, but have been used on high-volume facilities

#### Thin Cold-Mix Seal

 Treatments include slurry seals, microsurfacing and cape seals
 Used to fill cracks, increase frictional resistance and improve ride quality

#### Thin Hot-Mix Overlay

- Treatments include dense-, open and gapgraded mixes
- Used to improve ride quality, increase frictional resistance and correct surface irregularities

| Unit Costs and Expected Life |                      |                          |  |  |  |
|------------------------------|----------------------|--------------------------|--|--|--|
| Treatment                    | Unit Cost<br>(\$/SY) | Expected Life<br>(years) |  |  |  |
| Crack Seals                  | 1.00                 | 1 – 3                    |  |  |  |
| Fog Seals                    | 0.45                 | 2 - 4                    |  |  |  |
| Slurry Seals                 | 0.90                 | 3 – 7                    |  |  |  |
| Microsurfacing               | 1.25                 | 3 – 9                    |  |  |  |
| Chip Seals                   | 0.85                 | 3 – 7                    |  |  |  |
| Thin HM Overlay              | 1.75                 | 2 – 10                   |  |  |  |

# Framework for Treatment Selection and Timing

Data/criteria used for developing tools
 Decision tools for treatment selection
 Decision Trees
 Decision Matrices
 Benefits/limitations of decision tools

Optimum timing of treatments

# Data/Criteria Considered in Developing Tools

- Pavement type and construction history
- Functional classification or traffic level
- Pavement condition index
- Specific type of deterioration present
- Geometric issues
- Environmental conditions
- Unit costs ?
- Expected life ?

#### **Other Potential Criteria**

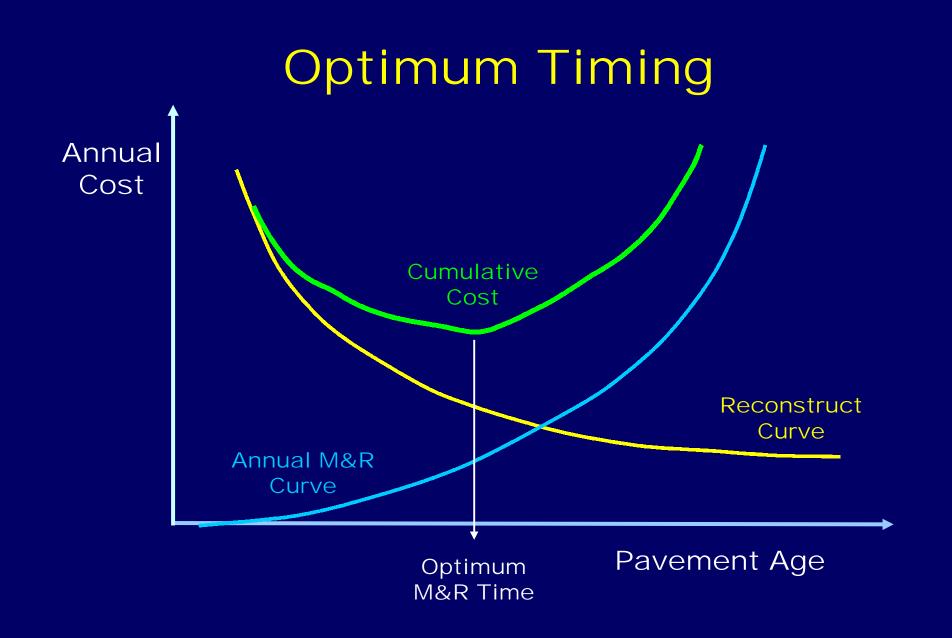
Availability of qualified contractors
Availability of materials
Time (of year) of construction
Pavement noise
Facility downtime
Surface friction

# **Typical Decision Tools**

Decision treesDecision matrices

# **Example HMA Decision Tree**

| M&R<br>Treatment          | Surface Wear<br>Severity | Env. Cracking<br>Extent | Struct<br>Deterior |     | Fatigue Crack<br>Extent | Rutting<br>Severity | M&R<br>Treatment             |
|---------------------------|--------------------------|-------------------------|--------------------|-----|-------------------------|---------------------|------------------------------|
| Crack<br>Seal             | Low                      |                         |                    |     |                         | Low                 | Mill/Fill<br>40 mm           |
| Surface<br>Treatment      | Moderate                 | Low                     |                    |     | Low                     | Moderate            | Mill/Fill<br>50 mm           |
| Crack Seal<br>+ 40 mm O/L | High                     |                         |                    |     |                         | High                | Mill/Fill<br>75 mm           |
| Crack<br>Seal             | Low                      |                         |                    |     |                         | Low                 | Mill 50 mm<br>O/L 75 mm      |
| Crack Seal<br>+ 40 mm O/L | Moderate                 | Moderate                | No                 | Yes | Moderate                | Moderate            | Mill 75 mm<br>O/L 100 mm     |
| Mill/Fill<br>50 mm        | High                     |                         |                    |     |                         | High                | Mill 100 mm<br>O/L 125 mm    |
| Mill/Fill<br>40 mm        | Low                      |                         |                    |     |                         | Low                 | Mill 100 mm<br>O/L 150 mm    |
| Mill/Fill<br>50 mm        | Moderate                 | High                    |                    |     | High                    | Moderate            | Rem HMA, Rep<br>Base, Repave |
| Mill/Fill<br>50 mm        | High                     |                         |                    |     |                         | High                | Total<br>Reconstruct         |


#### Example HMA Decision Matrix

|              |          | Treatment Number and Type |             |           |               |              |          |              |              |               |                 |               |             |               |
|--------------|----------|---------------------------|-------------|-----------|---------------|--------------|----------|--------------|--------------|---------------|-----------------|---------------|-------------|---------------|
| Distress     | Severity | Do Nothing                | Spot Repair | Seal Coat | Crack Filling | Cold Recycle | Rut Fill | Surface Mill | Thin Overlay | Thick Overlay | Part Mill & O/L | FD Mill & O/L | Reconstruct | Micro Surface |
| Flushing/    | Moderate | N/A                       | RL          | RL        |               |              |          |              |              |               |                 |               |             |               |
| Bleeding     | Severe   |                           |             |           |               |              |          | RL           | RL           |               | 10-12           |               |             | RL            |
| Non-         | Minor    | N/A                       | 3-5         |           | 3-5           |              |          |              |              |               |                 |               |             |               |
| Structural   | Moderate |                           | 3-5         |           | 3-5           |              |          |              | 6-9          |               | 8-10            |               |             |               |
| Cracking     | Severe   |                           |             |           |               |              |          |              |              | 8-12          | 8-10            | 12-15         | FL          |               |
| Insufficient | Minor    |                           | RL          |           |               | 5-8          | 2-6      |              | 4-8          |               |                 |               |             | 2-6           |
| Structure    | Moderate |                           |             |           |               |              | 2-6      |              | 4-8          | 8-12          |                 | 12-15         | FL          | 2-6           |
|              | Severe   |                           |             |           |               |              |          |              |              | 8-12          |                 | 12-15         | FL          |               |
| Bad Ride     | Minor    | N/A                       | RL          |           |               |              |          | RL           |              |               |                 |               |             |               |
|              | Moderate |                           |             |           |               |              |          | RL           | 8-10         |               | 10-12           |               |             |               |
|              | Severe   |                           |             |           |               |              |          | RL           |              | 12-15         | 10-12           |               |             |               |
| Unstable     | Minor    |                           | RL          |           |               |              | 2-6      |              | 4-8          |               |                 |               |             | 2-6           |
| Base &       | Moderate |                           |             |           |               | 5-8          | 2-6      |              | 4-8          | 8-12          |                 | 12-15         |             |               |
| Subgrade     | Severe   |                           |             |           |               |              |          |              |              | 8-12          | 10-12           | 12-15         | FL          |               |
| Unstable     | Minor    |                           |             |           |               |              | 2-6      |              |              |               | 6-10            | 8-12          |             | 5-8           |
| Mix          | Moderate |                           |             |           |               |              |          |              |              |               |                 | 8-12          | FL          |               |
|              | Severe   |                           |             |           |               |              |          |              |              |               |                 | 8-12          | FL          |               |
| Aged         | Minor    |                           | 08-Apr      | 3-6       |               |              | 2-6      |              |              |               |                 |               |             |               |
| Pavement     | Moderate |                           |             |           |               | 5-10         | 2-6      |              | 6-10         | 8-12          | 8-12            |               |             |               |
|              | Severe   |                           |             |           |               |              |          |              |              | 8-12          | 8-12            | 12-15         | FL          |               |
| Surface      | Minor    | N/A                       |             |           |               |              |          |              |              |               |                 |               |             |               |
| Raveling     | Moderate |                           |             | 3-6       |               |              |          |              |              |               |                 |               |             |               |
|              | Severe   |                           |             |           |               |              |          |              | 8-12         |               |                 |               |             |               |

#### **Benefits and Limitations**

- Makes use of experience
- Works well for local conditions
- Good project level tool

- Transferability
- Limits innovation
- Difficult to consider multiple factors
- Difficult to consider multiple distresses
- Avoids thorough LCC analysis
- Not good for network level evaluation



#### Analysis to Determine the Most Effective Treatment

- Determine cost and life expectancy data for YOUR agency to reflect local conditions
  - Previous projects
  - Pavement Management records
- Perform cost effectiveness evaluation
  - Number of different approaches exist
  - Use Equivalent Annual Cost-simple and effective

#### EQUIVALENT ANNUAL COST

#### Equivalent Annual Cost (EAC) =

#### unit cost of treatment expected life, years

#### **Decision Matrix**

- Useful to analyze several variables
- Can take several forms
- Preparation is easy
  - Select potential treatments
  - Compute equivalent annual cost
  - Identify project specific conditions
  - Develop rating factors for each condition
  - Rate the importance of each
  - Compute total score

#### **Example Decision Matrix**

#### Assumptions

- Project PCI is 70
- Cracking low to moderate
- Surface condition variable
- Ride quality marginal
- Projected traffic, 5 years, less than 5K ADT
- Two lanes, suburban, feeder to strip shopping center
- Desired life is 7 years

### Example Decision Matrix (continued)

Rating factors

Customer satisfaction

Performance

Constructability

#### Treatment Analysis Worksheet

|         | RATING FACTOR                            | SCORING<br>FACTOR | RATING<br>FACTOR | TOTAL<br>SCORE                        |
|---------|------------------------------------------|-------------------|------------------|---------------------------------------|
| PERFORM | MANCE EVALUATION                         |                   |                  |                                       |
| %       | Expected Life                            | X                 | =                | · · · · · · · · · · · · · · · · · · · |
| %       | Seasonal Effects                         | X                 | =                | :                                     |
| %       | Pavement Structure Influence             | X                 | =                | =                                     |
| %       | Influence of Existing Pavement Condition | X                 | =                | :                                     |
| CONSTRU | JCTABILITY                               |                   |                  |                                       |
| %       | Cost Effectiveness (EAC)                 | X                 | =                | :<br>                                 |
| %       | Availability of Quality Contractors      | X                 | =                |                                       |
| %       | Availability of Quality Materials        | X                 | =                |                                       |
| CUSTOM  | ER SATISFACTION                          |                   |                  |                                       |
| %       | Traffic Disruption                       | X _               | =                |                                       |
| %       | Noise                                    | X                 |                  |                                       |
| %       | Surface Friction                         |                   | =                |                                       |
|         |                                          |                   |                  |                                       |

**RATING FACTOR: PERCENT OF IMPACT ON TREATMENT DECISION (Total must equal 100%)** 

#### **SCORING FACTOR:** 5 = Exceptional

- **4 = Good**
- 3 = Average
- 2 = Below Average
- 1 = Unsatisfactory

# Example Rating Factors

| Treatment/           | Thin | Slurry | Chip | Micro-    |
|----------------------|------|--------|------|-----------|
| Factor               | HMA  | Seal   | Seal | surfacing |
| Existing Conditions  | 3    | 1      | 4    | 2         |
| Quality Materials    | 3    | 2      | 2    | 3         |
| Pavement Structure   | 4    | 3      | 3    | 3         |
| Expected Life        | 5    | 3      | 3    | 4         |
| Qualified Contractor | 4    | 4      | 5    | 2         |
| Weather Limitations  | 5    | 4      | 3    | 4         |

# Total Ranking for Project

| Treatment        | Total Score |
|------------------|-------------|
| Thin HMA Overlay | 3.40        |
| Slurry Seal      | 3.50        |
| Chip Seal        | 3.35        |
| Microsurfacing   | 3.75        |

#### **Example Decision Matrix**

#### Rating factors

- For any given project, the number and types of factors will vary
- Should be developed for each agency, the same as the EAC factor
- Factors can be weighted to account for differences between treatments for a the same characteristic

#### Computing Rankings

Factors are computed and scores for each treatment are derived

 Treatment with highest score is considered the most effective treatment for the specific project

### Summary

Preventive maintenance is the only effective way to manage pavements
 Simple, logical process for determining the the most effective treatment for a specific pavement has been presented
 Recognizing the type and cause of

pavement distress is fundamental to the approach

# Summary (continued)

- Agencies must develop cost and life data for various maintenance treatments
- A number of factors must be accounted for in determining the most effective treatment
- Cost needs to be considered but must not be the only consideration
- Good engineering principles should guide the selection of the treatment